
Bridgewater College Bridgewater College 

BC Digital Commons BC Digital Commons 

Honors Projects 

Spring 2023 

An Analysis of Energy Production and Efficiency in Various An Analysis of Energy Production and Efficiency in Various 

Longbow Archery Models Longbow Archery Models 

Hannah McPherson 
hmcpherson@eagles.bridgewater.edu 

Follow this and additional works at: https://digitalcommons.bridgewater.edu/honors_projects 

 Part of the Engineering Physics Commons, and the Other Physics Commons 

Recommended Citation Recommended Citation 
McPherson, Hannah. "An Analysis of Energy Production and Efficiency in Various Longbow Archery 
Models." Senior Honors Projects, Bridgewater College, 2022. 

This Honors Project is brought to you for free and open access by BC Digital Commons. It has been accepted for 
inclusion in Honors Projects by an authorized administrator of BC Digital Commons. For more information, please 
contact rlowe@bridgewater.edu. 

https://digitalcommons.bridgewater.edu/
https://digitalcommons.bridgewater.edu/honors_projects
https://digitalcommons.bridgewater.edu/honors_projects?utm_source=digitalcommons.bridgewater.edu%2Fhonors_projects%2F316&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/200?utm_source=digitalcommons.bridgewater.edu%2Fhonors_projects%2F316&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/207?utm_source=digitalcommons.bridgewater.edu%2Fhonors_projects%2F316&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rlowe@bridgewater.edu


   

AN ANALYSIS OF ENERGY 

PRODUCTION AND 

EFFICIENCY IN VARIOUS 

LONGBOW ARCHERY MODELS 
      

Hannah McPherson 

Advisor: Dr. Deva O’Neil 

Bridgewater College 

Fall 2022 



Abstract 

An analysis of the energy production and efficiency of three lab-tested longbow models is 

undertaken. The first model, which is constructed to not allow flexing of limbs and which uses a 

frictionless cart and track in place of an arrow, demonstrated an efficiency of 50% +/- 40%. The 

second model, which is constructed similarly to the first with the exception of a wooden dowel 

now being used as an arrow-like object, demonstrated an efficiency of 13% +/- 3%. The last model, 

a 3D printed longbow with flexible limbs using the wooden dowel as an arrow-like object, 

demonstrated an efficiency of 40% +/- 10%. A conclusion that may be drawn from this data, as 

well as from the values of work and kinetic energy contained herein, is that the flexibility of the 

limbs increases the energy efficiency of the bow. The results from the second and third models in 

particular, may explain how the flexible limbs of a real longbow facilitate the transfer of stored 

energy directly into kinetic energy, lowering the total amount of energy lost through other forms, 

such as vibrational in the strings.  

 

 

 

  



I. General Background  

 The bow and arrow have long been tools of humanity for hunting, war, and entertainment. 

With its many uses, the bow has evolved into a more complex tool throughout history, with 

innovative technologies still being used today to develop a more efficient system in terms of energy 

production and transfer. 

 The longbow is the most basic version of the bow. Traditionally made using a single piece 

of strong but flexible wood, such as yew, this tool stores the majority of its potential energy in the 

flex of two curved limbs at either end of the centered grip1. This flex is produced by the pulling of 

a string attached to both limbs during the draw cycle. As the longbow is drawn, some amount of 

energy is produced by the force required to move the string a certain distance. This energy becomes 

strain that is then stored in both the flexing limbs as well as the string itself, which becomes tauter 

than when the system is at a relaxed position. The focus of this research, however, is on what 

happens once the string is released. Upon release, the stored energy is dispersed, with some 

becoming kinetic energy transferred to the arrow, propelling it forward. While much of the energy 

stored within the bow is transferred to the arrow in an efficient model, there is some dispersed in 

the string as vibrations while it snaps back into its resting position. A small amount of energy is 

also given off as heat from the system. Therefore, it is important to focus on the work produced 

by the system during the time after the string is released from its taut position up until the arrow 

loses contact with the string. Through this, it would then be possible to determine how much energy 

is kinetic, and how much is lost through other means for several types of archery models. 

Additionally, the efficiency of the model itself may be found in terms of how much of the energy 

put into the longbow leaves in the form in kinetic energy.  



Before continuing the discussion on energy and efficiency, a few terms must be defined. 

One important characteristic of bows is brace height2. This measurement refers to the distance 

between the center point of the bow grip and the main string in resting position2. The draw length 

of the bow may be determined from measuring the furthest point on the string at full draw, which 

is where the arrow should be nocked, to the center of the bow’s grip, subtracting the brace height. 

Both of these features are outlined in figure 1 below. This relationship can therefore be described 

as 

𝛥𝑑 − 𝑏 = 𝑙, 

(1) 

where d, b, and l represent displacement, brace height, and draw length, respectively. 

 

Figure 1. (a) Diagram of longbow model in undrawn position, highlighting brace height; (b) Diagram of longbow 

model in drawn position, displaying draw length. The distance that the bow was drawn back may be found by 

subtracting these two values.  

 



In the context of this paper, the brace height was used as the origin point of measurements 

for horizontal distance measurements, as the arrow was found to lose contact with the string after 

this point.  

 Another constant of importance in the following models is string angle. At full draw on all 

models of a longbow, the location where the arrow is connected to the string will form a decisive 

angle with either ends of the string both above and beneath it. If the arrow is in the exact middle 

of the string, as is the norm, this angle will be the same on either side. For the sake of accuracy 

when firing any bow model, it is important that the string angle is the same each draw cycle, as 

this allows for a consistent draw length and weight, producing an accurate shot by eliminating 

variance between cycles. This constant will be discussed more in the following sections on theory 

due to its importance in the calculations for determining work in the bow/arrow system.  

II. Theory 

Kinetic Energy Calculations 

Herein it is important to note that an analysis of the energy present in the system after to 

the release of the string is being undertaken. Therefore, the following calculations are relevant in 

the time between release and the time at which the string reaches the brace height, which is where 

the arrow disconnects from the string and has been labeled as the origin of our system.  

In order to calculate the kinetic energy present in the system at any given time, t, the 

standard formula for classical motion is applied, 

𝐾𝐸 =
1

2
𝑚𝑣2 . 

(2) 



Here, the mass, m, is the mass of the arrow in kg, and the velocity, v, is taken in m/s, allowing for 

a kinetic energy value in Joules. Note that this unit convention will be applied throughout this 

paper. This value of kinetic energy may be calculated for multiple intervals during the period 

listed above. In order to find the velocity of the arrow/string system for each interval, it may be 

assumed that 

𝑉 =
𝛥𝑥

𝛥𝑡
 , 

(3) 

where velocity is equal to the ratio of change in distance, x, over change in time, t. 

Work Calculations 

 The second value that is intended to be analyzed in this research, work, may be found in 

the following way for each of the intervals used in the calculations for kinetic energy: 

𝑊 = 𝐹𝛥𝑥 ,  

(4) 

where the force, F, is the net force of the string/arrow system during each interval denoted by 

position, x. In order to find this net force, the string angle must be calculated. This may be 

undertaken by following the diagram listed below. Once the string angle, θ, is found in radians, 

the net force of the interval may be calculated.  



 

Figure 2. (a) Position Diagram of standard longbow at drawn position; (b) Force Diagram of standard longbow at 

drawn position. Both diagrams share the same value for θ. 

 

 Following the diagrams in figure 2, the horizontal and vertical values referenced may be 

known through data collection. In the case of a non-bending bow, the value for ly will stay 

constant for the entirety of the release cycle. The collection of values for lx will be discussed 

below in the experimental section. In order to calculate work, however, we will need to find the 

net force on the string. This value, Fnet, will rely on the value for Fx, as the vertical force, Fy, will 

cancel itself out on either side of the string, being as it is equal in magnitude but opposite in 

direction. The value of force, F, which will be found experimentally, must be used alongside the 

value for θ for the given interval in order to solve for Fx. Therefore, using the figure 2b above, it 

may be assumed that 

𝐹𝑛𝑒𝑡 = 𝐹ℎ𝑦𝑝 𝑥 = 2𝐹ℎ𝑦𝑝cos (θ). 

(5) 



In order to complete this calculation, one must first find the value for θ in the given 

interval. This may be done according to the diagram found in figure 2a in accordance with 

𝜃 = arccos(
𝑙𝑥

𝑙𝑦
). 

(6) 

Once the string angle is found, equation 5 may be implemented to find the net force 

along each interval of the release cycle. Note that the string angle will change with each interval, 

so these values must be recalculated at each value of Δt.  

Efficiency 

 At the conclusion of calculations for kinetic energy and work, an analysis of the system’s 

efficiency will be undertaken according to the below equation, 

𝜂 =
𝛥𝐾𝐸

𝑊𝑛𝑒𝑡
 . 

(7) 

For the value of 𝛥𝐾𝐸, it is crucial that value for the last interval is used for this calculation. This 

way, the total efficiency of the model may be found. It is important to note, however, that the 

value for Wnet is our total energy input, or the sum of all energy in the system according to 

equation 8,  

𝑊𝑛𝑒𝑡 =  𝛥𝐾𝐸 + 𝐸 ,  

(8) 

where E denotes other forms of energy that may be produced during the release cycle, such as 

vibrational energy in the string or thermal energy dispersed from the system.  

 

 



III. Experiment 

Model One; Non-flexing Limbs with Frictionless Cart 

Materials 

• (1) PASCO Wireless Force Acceleration Sensor with Hook Attachment 

• (1) Laptop with PASCO Capstone Software and Video Camera 

• (1) PACSO Wireless Smartcart 

• (1) Frictionless Cart Track 

• (1) 1.2m Steel Rod 

• (2) 0.303m Steel Rods, 0.012m diameter 

• (2) Orthogonal Boss Head Clamps 

• (1) C-Clamp 

• (1) Large Bench Clamp 

• (1) Ruler 

• 0.65m Flexible String, 0.003m diameter  

 

 

For the experimental portion of the project, three different systems were assembled and 

evaluated. The first, pictured in figure 3 below, was made up of a longbow-type model that relied 

only on the flex in the string for energy production. With a typical longbow, the string is 

anchored at either end by flexible limbs that allow for a greater energy capacity. In this case, 

however, the system was created by attaching a large metal rod to a table in a vertical position. 

To this rod, two smaller bars were attached horizontally, 0.62m apart. The string was attached to 

the model 0.18m along the horizontal rods, measured from the vertical beam. At the bottom, the 

string was tied into place and wrapped to prevent sliding. On the top rod, however, a PASCO 

Force Detector was attached at the 0.18m point using a clamp. A hook was then screwed onto the 

detector, which allowed for the top end of the string to be securely looped on.  



          

Figure 3. Experimental setup one, longbow model without flexible limbs with frictionless cart and track as arrow-

like object (left); Experimental setup two, longbow model without flexible limbs with wooden dowel as arrow-like 

object (right).  

 

In place of an arrow, this first experiment was completed with a small frictionless cart on a 

track instead. This choice was made in order to create a baseline for data collection. Due to the 

high mass of the cart, the video analysis was capable of producing a greater number of frames to 

analyze during the needed period, allowing for more data to work with. Additionally, this object, 

when used in conjunction with the friction-less track, was a model similar to that of a regular 

archery arrow during the draw and release cycles. As far as the cart and track placement is 

concerned, the rod and string setup outlined above was situated so that the middle of the string 

was level with the stopper on the end of the cart when it was resting on the track placed on a 

tabletop. This step is crucial so that the string angle is the same both above and below the place 

the cart is touching the string every time.  



For data collection, it has already been mentioned that a PASCO Force detector was in use. 

This data was supplemented by position measurements collected by using CAPSTONE software 

with video analysis. This allowed for a video to be taken during the experiment, with time values 

during said video correlating to simultaneous collection of force data from the detector. It is 

important to note that a scale must be defined in order to execute proper video analysis. In the 

case of this experiment, a ruler was placed in the same place as the track. Using video analysis 

tools, it was then possible to determine the distance the cart traveled during each interval, 

allowing for the appropriate energy and work calculations to take place. These intervals were 

determined to be the frame rate used to record the video, which was 0.033 seconds. Another 

matter to note here is that when using the CAPSTONE software in conjunction with the PASCO 

Force Detector in this experiment, it is necessary to change the collection speed of said detector 

to a higher rate. For this and the following experiments, this value was set to the max, 1kHz.  

Model Two; Non-flexing Limbs with Wooden Dowel  

Materials 

• (1) PASCO Wireless Force Acceleration Sensor with Hook Attachment 

• (1) Laptop with PASCO Capstone Software and Video Camera 

• (1) 0.46m Wooden Dowel, 0.09m diameter 

• (1) 1. 2m Steel Rod 

• (2) 0.303m Steel Rods, 0.012 diameter 

• (2) Orthogonal Boss Head Clamps 

• (1) C-Clamp 

• (1) Large Bench Clamp 

• (1) Ruler 

• 0.65m Flexible String, 0.003m diameter 

 

For the second longbow model, which can also be seen in figure 3 above, the assembly was 

altered to use a wooden dowel as an arrow-like object in place of the cart used previously. This 



change allowed for an object of smaller mass to be launched, while still using something of an 

arrow-like shape. An important note on the dowel, however, is that it was necessary to carve a 

small notch into one end to simulate a “nock” which is a small piece on the end of an arrow that 

connects it to the string. In the case of this experiment, this was included in order to fit the dowel 

to the string during the draw and release cycle, making it much simpler to analyze when the 

arrow left the string during the video analysis stage. Due to the low mass of an actual arrow, it 

was decided to use the dowel in order to allow for a video analysis to remain possible. In 

addition, the overall length of the longbow model was decreased to 0.52m in order to keep the 

velocity of the dowel low while still allowing for a substantial change in horizontal position from 

the brace height when pulling back the string. The anchor points of the string for both the top and 

the bottom of the model were kept 0.18m from the main rod. Furthermore, the data collection 

method for these trials were kept constant from the first experiment, using a combination of the 

force detector and video analysis to acquire values for force, time, and distance during the 

intervals determined by the frame rate. In order to maintain lab safety, the wooden dowel was 

fired into a sizable box a short distance away in order to prevent accidental damage of lab 

equipment or observers. 

Model Three; Flexing Limbs with Wooden Dowel  

Materials 

• (1) PASCO Wireless Force Acceleration Sensor with Hook Attachment 

• (1) Laptop with PASCO Capstone Software and Video Camera 

• (1) Computer with access to SOLIDWORKS and Qidi Print Software 

• (1) QIDI X-MAX Printer 

• (1) PLA Printed Longbow 

• (1) 0.46m Wooden Dowel, 0.009m diameter 

• (1) C-Clamp 

• (1) Ruler 

• 0.65m Flexible String, 0.003m diameter 



       

Figure 4: Experimental setup 3, 3D printed longbow model with flexible limbs (left); Flexible longbow limbs, 

designed using SOILDWORKS and printed using PLA filament (right). 

 

The third experimental setup, shown above in figure 4, involved allowing flex in the limbs of 

a longbow. In order to achieve this, a small longbow model was created in Solidworks and 3D 

printed using PLA filament in a Qidi X-Max printer. The object was then evaluated using the 

same wooden dowel from experiment two as the arrow-like object. The design of the longbow 

limbs was such that two identical limbs may be printed and inserted into a small grip, which was 

also made of two interlocking pieces, allowing for a longer model to be created without 

exceeding the parameters of the printer bed. In addition, the limbs were designed to have a small 

notch near their ends in order to keep the string from changing position during the draw cycle. 

Once assembled, the longbow model had the string anchored on the top at the pre-printed notch. 



On the bottom limb, however, the Force Detector was attached using a clamp, with the string 

attached to the detector’s hook in line with the pre-printed notch. In order to maintain lab safety, 

the wooden dowel was again fired into a sizable box a short distance away in order to prevent 

accidental damage of lab equipment or observers. The data collection for this experiment was 

kept constant to that of the previous two.  

IV. Results & Discussion 

Error Propagation 

An in-depth discussion of the results of this research will require additional calculations for 

error propagation of the resultant values of kinetic energy, work, and efficiency. The first 

propagation to be completed is the uncertainty in work values. According to equations 4- 6, it 

can be seen that work is related to the value of θ for each interval. Therefore, the uncertainty 

calculations for work must start with an evaluation of the uncertainty in θ, which may be found 

by 

𝛥𝜃 =  √(
𝛿𝜃

𝛿𝑥
)

2

𝛥𝑥2 + (
𝛿𝜃

𝛿𝑦
)

2

𝛥𝑦2 . 

(9) 

In order to find the values for the derivatives, one must first take a look at the governing equation 

for the calculation of θ, equation 6 from above. From this, it can be determined that the 

derivative of θ with respect to the x position of a given point is 

𝛿𝜃

𝛿𝑥
=  −

𝑦

𝑥2(1+
𝑦2

𝑥2)
 . 

(10) 

For the second term, θ with respect to the y position of the string/arrow system, it can be assumed 

that there is negligible uncertainty due to this value being measured repeatedly in the lab for the 



experiments outlined below. Therefore, after eliminating that term and simplifying algebraically 

from equation 9, we are left with 

𝛥𝜃 =
𝛿𝜃

𝛿𝑥
𝛥𝑥 =  −

𝑦

𝑥2(1+
𝑦2

𝑥2)
 Δx.  

(11) 

Now that the absolute uncertainty of θ has been derived, we may begin solving the absolute 

value of the horizontal force uncertainty,  

𝛥𝐹𝑥 =  √(
𝛿𝐹𝑥

𝛿𝜃
)

2

𝛥𝜃2 + (
𝛿𝐹𝑥

𝛿𝐹ℎ𝑦𝑝
)

2

𝛥𝐹ℎ𝑦𝑝
2  

(12) 

Taking the above derivatives with respect to θ and Fhyp from equation 5 yields 

𝛿𝐹𝑥

𝛿𝜃
=  −2𝐹ℎ𝑦𝑝 ∗ 𝑆𝑖𝑛𝜃 , and  

(13) 

𝛿𝐹𝑥

𝛿𝐹ℎ𝑦𝑝
= 2 ∗ 𝐶𝑜𝑠𝜃.  

(14) 

Using the values calculated for theta and Fhyp from experimental data, equation 12 may now be 

solved for a numerical value of absolute uncertainty of horizontal force, Fx. In order to calculate 

work, however, the fractional uncertainty of Fx must be obtained. This may be found through 

𝛿𝐹𝑥 =
𝛥𝐹𝑥

𝐹𝑥
 . 

(15) 

Also needed for the calculation of uncertainty for work is the fractional uncertainty of the 

string/arrow x-position, 

𝛿𝑥 =
𝛥𝑥

𝑥
. 

(16) 



It is important to note that the value for x used in the above formula should be the change in 

distance over the given interval, rather than a single position point. Now that the values for 

uncertainty in Fx and x have both been determined, work uncertainty may be found by  

𝛿𝑤 =  √𝛿𝐹𝑥
2 +  𝛿𝑥2. 

(17) 

Using the solution found in equation 17, absolute uncertainty of work can be determined according 

to equation 18, 

𝛥𝑤 =  𝛿𝑤 ∗ 𝑤. 

(18) 

The concluding calculation in this series is to find the absolute uncertainty of the net work done 

in the system,  

𝛥𝑤𝑛𝑒𝑡 =  √𝛴(𝛥𝑤2). 

(19) 

The next value to calculate uncertainty for is velocity. From equation 3, it is known that 

velocity in the context of this research is found through the change in distance over the change in 

time. Therefore, the uncertainty for these values must be found in order to calculate that of 

velocity. For the change in time, fractional uncertainty can be found by  

𝛿𝑡 =
√𝛥𝑡𝑏

2+ 𝛥𝑡𝑐
2

𝑡
=

√2𝛥𝑡

𝑡
 . 

(20) 

Note that for the above equation, the absolute uncertainty of all intervals of time are the same, so 

it may be simplified for the change in time to have a factor of root two when calculating the 

fractional uncertainty from a ratio of absolute uncertainty and the time interval. This may also be 



applied to the calculation of fractional uncertainty in x, as the values will be the same for each 

interval as well, giving 

𝛿𝑥 =
√2𝛥𝑥

𝑥
. 

(21) 

Now, these values may be combined into 

𝛿𝑣 =  √𝛿𝑡2 +  𝛿𝑥2. 

(22) 

From there, the absolute uncertainty of the velocity of a given interval may be determined by  

𝛥𝑣 = 𝑣 ∗ 𝛿𝑣. 

(23) 

Given that the absolute uncertainty of velocity has now been derived, the uncertainty in 

kinetic energy must also be considered. Conveniently, the uncertainty for KEnet of the system is 

calculated very similarly to that of Wnet. Following equation 24 below, it can be seen that the 

partial derivatives of both variables in the kinetic energy formula (found in equation 2) are 

necessary. These terms are shown in equations 25 and 26, allowing a numerical answer for the 

fractional uncertainty in kinetic energy for each interval. This value can then be used to 

determine the absolute uncertainty for the kinetic energy.  

𝛿𝐾𝐸 =  √(
𝛿𝐾𝐸

𝛿𝑚
)

2

𝛥𝑚2 + (
𝛿𝐾𝐸

𝛿𝑣
)

2

𝛥𝑣2 

(24) 

𝛿𝐾𝐸

𝛿𝑚 
=

1

2
𝑣2 

(25) 

𝛿𝐾𝐸

𝛿𝑣
= 𝑚𝑣 

(26) 



𝛥𝐾𝐸 = 𝐾𝐸 ∗ 𝛿𝐾𝐸 

(27) 

Finally, the uncertainty of the net kinetic force during the release cycle may be determined by 

𝛥𝐾𝐸𝑛𝑒𝑡 =  √𝛴(𝛥𝐾𝐸)2. 

(28) 

The concluding calculation for this section will be deriving the absolute uncertainty of the 

efficiency of the model. From equation 7, it can be seen that said efficiency is a ratio of the 

change in kinetic energy output in the final interval of the cycle and the total work calculated 

over all intervals. Since the absolute uncertainty for both of these values has already been 

calculated, the calculation will start with  

𝛿𝜂 = √𝛿𝐾𝐸2 +  𝛿𝑤𝑛𝑒𝑡
2 ,  

(29) 

where the fractional uncertainties for kinetic energy and net work are given by 

𝛿𝐾𝐸 =
𝛥𝐾𝐸

𝐾𝐸
, and 

(30) 

𝛿𝑤𝑛𝑒𝑡 =
𝛥𝑤𝑛𝑒𝑡

𝑤𝑛𝑒𝑡
. 

(31) 

Lastly, the absolute uncertainty of the model’s efficiency will be determined by  

𝛥𝜂 =  𝛿𝜂 ∗  𝜂. 

(32) 

 

To begin the analysis of the data collection from the experiments listed above, one may first 

take a look at the position graphs of the three models. In figure 5, these graphs may be observed. 

For all three models, the relationship between the changes in position and time follow a quadratic 

fit rather than linear. This demonstrates that the velocity for each time interval is changing, and in 



the case of the graphs in figure 5, said velocity is increasing. For the first model, the quadratic fit 

of the graph is generated using seven data points. Since the R2 value for this graph is remarkably 

close to one, it can be assumed that this fit is accurate. Therefore, for this model it is possible to 

determine the x-position of the cart/string system (measured at the point the cart touches the string) 

for any time during the release cycle. For the second model, however, only three data points were 

observed due to the low frame rate used for the video analysis. Unfortunately, this makes it difficult 

to tell if the fit is truly accurate, so additional testing of the model in a way to gain more data points 

to necessary to draw a reasonable conclusion. In the case of the third model, the quadratic curve is 

created using five data points, resulting in a decent fit. Like the first model, this means that the x-

position of the arrow/string system (measured at the point that the arrow touches the string) can be 

determined for any time during the release cycle. Further analysis of this trend can be taken by 

referencing the raw data and calculations from the experiments in Appendices A-C. Note that the 

values of kinetic energy and work also increase with time, which is in line with increasing values 

of velocity. 
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Figure 5: Position versus time graph of non-flexing limbs model using the cart and track in place of an arrow (top 

left); Position versus time graph of non-flexing limbs model using wooden dowel (top right); Position versus time 

graph of flexing limb model using wooden dowel (bottom). 

 

Furthermore, a look into the calculated values for Wnet, KEnet, and final velocity should also be 

taken. For the first, non-flexing model, the Wnet was found to be 0.05 +/- 0.04J. In comparison, 

KEnet for this model was 0.087 +/- 0.001J. Therefore, the kinetic energy measured in the 

string/arrow system was greater than the total work done in the system, or the energy that was put 

into it. While this result seems implausible, the high value of uncertainty for Wnet means that it is 

possible that the total work of the system could be a much greater value than what was calculated. 

The calculated final velocity of this first model was found to be 0.4 +/- 0.6 m/s, which was much 

lower than in subsequent models. Additionally, there is again a high uncertainty, being more than 

the value itself. This is due to uncertainty in the x-position of the string/cart system, as the low 

frame rate of the video made analysis difficult due to blurring of the cart.  

For the second model, the values for Wnet and KEnet were found to be 0.6 +/- 0.2J and 0.0781 

+/- 0.0008J, respectively. In this case, the work put into the system was much greater than the total 

kinetic energy calculated to have exited. This is a plausible result, as the string was observed to 

have high vibration after the dowel was disconnected at the end of the release cycle, demonstrating 
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that there should have been a large amount of energy lost. The final velocity of the string/dowel 

system for this model was calculated to be 2.6 +/- 0.6 m/s, which is a significantly higher value 

than in the previous model. Additionally, the value for uncertainty remains the same, but it now is 

a lower percentage of the velocity itself. 

In the third model, similar calculations were completed. The values of Wnet and KEnet were 

found to be 0.23 +/- 0.06J and 0.122 +/- 0.004J, respectively, while the final velocity of the system 

was calculated to be 2.9 +/- 0.7 m/s. In this case, it can be seen that while the total work in the 

system is greater than the total kinetic energy, there is a smaller difference between the two than 

in the previous model. In the non-flexing wooden dowel system, the total kinetic energy of the 

system made up only 13% of the total work, omitting uncertainties. In contrast, the flexing model 

used in experiment three yielded total kinetic energy that made up 53% of the total work in the 

system, omitting uncertainties. These values hint at a trend in efficiencies of the various systems, 

which will be discussed in the following paragraphs.  

A further analysis of these models involves comparing the calculated values of efficiency for 

all three experiments. In the first model, which was assembled to eliminate any flex in limbs and 

used a friction-less cart and track in place of an arrow, there was found to be great efficiency. This 

efficiency, a ratio of change in kinetic energy and overall energy input as in equation 7, was 

calculated to be 50% +/- 40%. Due to the high value of uncertainty for this model, it is difficult to 

draw any reasonable conclusions from the data. From the error bars, the value of efficiency for 

this mode could be either exceedingly small, resulting in an inefficient system in which very little 

of the energy present is converted into kinetic energy, or it could lead to a very efficient system in 

which the majority of energy present is converted into kinetic energy. Therefore, additional testing 



of this model, minimizing error gained in the uncertainty of the x-position, is required in order to 

draw a valid conclusion.   

In the second model, which was again assembled to eliminate any flex in limbs but replaced 

the cart and track with a wooden dowel, the same efficiency calculations were undertaken. Out of 

the three trials for this model, the highest value for efficiency was 13% +/- 3%. During the 

experiment, this model had a noticeable increase in string vibration compared to the previous. 

Additionally, it was observed to be much louder during the release cycle, leading to an inefficient 

system as energy was dispersed in vibrations in place of kinetic energy propelling the dowel 

forward.  

In the third model, which was assembled in a way to allow for the flexing of limbs, most closely 

simulating that of a typical longbow, the efficiency with the dowel had a bit of variance between 

trials. The highest value was found to be 40% +/- 10%. Herein, it can be determined that the system 

is efficient in comparison to the non-flexing dowel model, however it is inefficient in comparison 

to the non-flexing model utilizing the cart and track.  

An analysis of the second and third models, which utilized an arrow-like object, can be 

compared to real world models. For example, the low value of efficiency in the second model, 

which did not use flexible limbs, compared to the higher value found in the model that did use 

flexible limbs could suggest some reasoning behind the typical design component of having 

flexible bow limbs. Not only do the limbs seem to store energy, but they also help to facilitate the 

transfer of the potential energy directly into kinetic, mitigating the amount lost through other forms 

and creating a more efficient model that that of a non-flexing longbow.  



Overall, the values for uncertainty found from the data have the potential to be reduced. For 

example, the uncertainty for x-position was assumed to be 0.015m, as the low frame rate of the 

video made accurate analysis difficult. This in turn affected the uncertainty of all subsequent 

uncertainty calculations. In order to solve this issue, a video camera with a higher frame rate could 

be used in future trials in order to refine the results from the three models. Additionally, another 

solution could involve using a position motion sensor in real-time in conjunction with the force 

detector in order to eliminate the need for video analysis altogether. The assumed values of 

uncertainty for x-position, time, and force were 0.015m, 0.001s, and 0.00001N, respectively for 

all models.  

V. Future Directions 

Further work on this material could include repeated trials of the three experiments listed above 

with a camera capable of a greater frame rate in order to allow for more intervals, especially in 

regard to the second and third experiments. In these cases, more accurate representations could be 

modeled from an increase in data.  

Furthermore, another avenue of research may stem from pursuing more efficient longbow 

models, encouraging a dive into how and why the longbows of today are made, and if they can be 

improved upon. For example, research into how the longbows used in the modern Olympics differ 

from those used in past centuries may be of interest in terms of the total efficiency of the system.  

Subsequent research may also be conducted in regard to the draw cycle of a longbow. For 

instance, the experimental setups from above may be reevaluated for work and energy values 

throughout the draw cycle instead of the release cycle. This data may then be compared to that of 

the release cycle, to observe if there are any noticeable changes in the potential energy stored in 

the bow system and that which is converted to kinetic upon release of the string.  
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Appendix A 

The following is raw data as well as calculation results collected in three trials using the first 

model outlined in the experimental section: non-flexing limbs with cart/track arrow substitution. 

Trial 1 

X-Position (m)  Force (N) Time (s) 

-0.059641353785992 -3.814727711395870 1.225 

-0.058248631656170 -3.793848229813610 1.259 

-0.052664741873741 -3.772968748233630 1.292 

-0.042897373437881 -3.747270924750580 1.326 

-0.030339367687702 -3.732815899041370 1.359 

-0.014993242919445 -3.760119836492110 1.393 

 

Lx (m) Ly (m) θ (radians) Fx (N) 

0.060 0.308 1.380 1.450430572 

0.058 0.308 1.384 1.409983858 

0.053 0.308 1.401 1.271817133 

0.043 0.308 1.432 1.033839585 

0.030 0.308 1.473 0.731855811 

0.015 0.308 1.522 0.365647478 

0.001 0.308 1.567 0.025295576 

 

ΔX (m) ΔT (s) V (m/s) KE (J) KEnet (J) 

0.0014 0.034 0.04156 0.00023 0.00023 

0.0056 0.034 0.16661 0.00378 0.00401 

0.0098 0.034 0.29144 0.01155 0.01556 

0.0126 0.034 0.37471 0.01910 0.03466 

0.0153 0.034 0.45790 0.02852 0.06317 

0.0140 0.034 0.41642 0.02358 0.08676 

 

W (J) Wnet (J) 

0.002020 0.002020 

0.007873 0.009893 

0.012422 0.022316 

0.012983 0.035299 

0.011231 0.046530 

0.005103 0.051633 

 



Trial 2 

X-Position (m) Force (N) Time (s) 

-0.052779801189899 -4.60654189746500 0.505 

-0.052779801189899 -4.59851132762655 0.538 

-0.051416337490082 -4.57923796001426 0.571 

-0.044599033892155 -4.55146250498915 0.605 

-0.033691331744194 -4.49720033694362 0.638 

 

Lx (m) Ly (m) θ (radians) Fx (N) 

0.0528 0.308 1.401 1.556 

0.0528 0.308 1.401 1.553 

0.0514 0.308 1.405 1.508 

0.0446 0.308 1.427 1.305 

0.0337 0.308 1.462 0.978 

0.0173 0.308 1.515 0.503 

 

ΔX (m) ΔT (s) V (m/s) KE (J) KEnet (J) 

0.000000000000000 0.033 0 0 0 

0.001363463699817 0.033 0.040904 0.000227554 0.000227554 

0.006817303597927 0.033 0.204519 0.005688837 0.005916392 

0.010907702147961 0.033 0.327231 0.014563468 0.02047986 

0.016361534595489 0.033 0.490847 0.032767727 0.053247587 

 

W (J) Wnet (J) 

0.000000 0.000000 

0.002118 0.002118 

0.010281 0.012399 

0.014229 0.026628 

0.016002 0.042630 

 

 

 

 

 

 



Trial 3 

X-Position (m) Force (N) Time (s) 

-0.195256963372231 -4.569601276208120 0.706 

-0.182923495769501 -4.543903452725070 0.739 

-0.158256635069847 -4.508568945435890 0.772 

-0.113034084439278 -4.492507805758980 0.805 

-0.051366925239563 -4.479658894074550 0.839 

 

Lx (m) Ly (m) θ (radians) Fx (N) 

0.195 0.308 1.006 4.893 

0.183 0.308 1.035 4.641 

0.158 0.308 1.096 4.121 

0.113 0.308 1.219 3. 096 

0.051 0.308 1.406 1.474 

 

ΔX (m) ΔT (s) V (m/s) KE (J) KEnet (J) 

0.012 0.0333 0.37 0.018704386 0.018704386 

0.025 0.0333 0.74 0.074817092 0.093521478 

0.045 0.0333 1.36 0.251468257 0.344989735 

0.062 0.0333 1.85 0.46760694 0.812596675 

 

W (J) Wnet (J) 

0.060352006 0.060352006 

0.114468718 0.174820724 

0.18636292 0.361183644 

0.190894728 0.552078372 

 

Additional Notes: 

 -All three trials shared the constant value of 0.308m for Ly, referenced in figure 2. 

 -The mass of the cart was found to be 0.27201kg.  

  



Appendix B 

The following is raw data as well as calculation results collected in three trials using the second 

model outlined in the experimental section: non-flexing limbs with wooden dowel. 

Trial 1 

X-Position (m)  Force (N) Time (s)  

-0.076973587274551 -3.984975791968780 0.451 

-0.075204581022263 -3.601114553690750 0.484 

 

Lx (m) Ly (m) θ (radians) Fx (N) 

0.076973587 0.2575 0.206576144 7.800501785 

0.075204581 0.2575 0.290155542 6 901171511 

 

ΔX (m) ΔT (s) V (m/s) KE (J) KEnet (J) 

0.001769006252288 0.033 0.053007 3.13986E-05 3.13986E-05 

0.088223546743393 0.033 2.643545 0.078094573 0.078125972 

 

W (J) Wnet (J) 

0.013799136 0.013799 

0.608845827 0.622645 

 

 

Trial 2 

X-Position (m)  Force (N) Time (s) 

-0.035688817501068 -3.58184118607847 0.611 

-0.033949673175812 -3.55774947656311 0.644 

 

Lx (m) Ly (m) θ (radians) Fx (N) 

0.035688818 0.2575 1.34637193 1.594243346 

0.033949673 0.2575 3.6241833 6.302877955 

 

ΔX (m) ΔT (s) V (m/s) KE (J) KEnet (J) 

0.005286842584610 0.033 0.159553 0.000284483 0.000284483 

0.068721830844879 0.033 2.07397 0.048067611 0.048352094 



W (J) Wnet (J) 

0.002772619 0.002773 

-0.164606797 0.167379 

 

Trial 3 

X-Position (m) Force (N) Time (s) 

-0.049555957317352 -3.719966987299840 0.688 

-0.044269114732742 -3.639661288915320 0.722 

 

Lx (m) Ly (m) θ (radians) 
 

Fx (N) 

0.049555957 0.2575 -1.903326962 -2.42866 

0.044269115 0.2575 -0.503556694 6 37575 

 

ΔX (m) ΔT (s) V (m/s) KE (J) KEnet (J) 

0.005286842584610 0.033 0.159553 0.000284483 0.000284483 

0.068721830844879 0.033 2.07397 0.048067611 0.048352094 

 

 

 

 

 

Additional Notes: 

 -All three trials shared the constant value of 0.2575 for Ly, referenced in figure 2.  

 -The mass of the wooden dowel was found to be 0.02235kg.

  

W (J) Wnet (J) 

-0.01284 -0.01284 

0.438153 0.425314 



Appendix C 

The following is raw data as well as calculation results collected in three trials using the third 

model outlined in the experimental section: flexing limbs with wooden dowel.  

Trial 1 

X-Position (m)  Force (N) Time (s) 

0.211815804243088 -2.43025747124438 5.164 

0.207477182149887 -2.37316026504450 5.197 

0.205307930707932 -1.60150266391607 5.231 

 

Lx (m) Ly (m) θ (radians) Fx (N) 

0.211815804243088 0.273828923702240 0.912403209 2.97389 

0.207477182149887 0.278180837631226 0.929965742 2.83764 

0.205307930707932 0.278180837631226 0.934995186 1.90202 

 

ΔX (m) ΔT (s) V (m/s) KE (J) KEnet (J) 

0.004338622093201 0.033 0.131473397 0.000193163 0.000193163 

0.002169251441955 0.034 0.063801513 4.54893E-05 0.000238652 

0.095450460910798 0.033 2.892438209 0.093492272 0.093730924 

 

W (J) Wnet (J) 

0.012903 0.012903 

0.006156 0.019058 

0.181548 0.200606 

 

Trial 2 

X-Position (m) Force (N) Time (s)  

0.162410497665405 -2.43346969917976 6.474 

0.160099744796753 -2.38689239411673 6.507 

0.153167784214020 -2.07530628438478 6.541 

0.100021958351135 -1.58222929630379 6.574 

 

Lx (m) Ly (m) θ (radians) Fx (N) 

0.162410497665405 0.278599083423614 1.043004824 2.451120158 

0.160099744796753 0.278599083423614 1.049217616 2.378536141 

0.153167784214020 0.278599083423614 1.068123195 1.999339442 

0.100021958351135 0.276288390159607 1.223453542 1.077183238 



 

ΔX (m) ΔT (s) V (m/s) KE (J) KEnet (J) 

0.002310752868652 0.033 0.070022814 5.47932E-05 5.47932E-05 

0.006931960582733 0.034 0.203881194 0.000464517 0.00051931 

0.053145825862885 0.033 1.610479572 0.028983977 0.029503287 

0.094737887382507 0.033 2.870845072 0.092101572 0.121604859 

 

W (J) Wnet (J) 

0.005663933 0.005663933 

0.016487919 0.022151852 

0.10627249 0.128424341 

0.102050064 0.230474406 

 

Trial 3 

X-Position (m)  Force (N) Time (s)  

0.229949384927750 -2.56517104453038 8.683 

0.225305408239365 -2.56171044530381 8.716 

0.209051579236984 -2.30979892366759 8.749 

 

Lx (m) Ly (m) θ (radians) Fx (N) 

0.229949384927750 0.282197117805481 0.887063605 3.240791 

0.225305408239365 0.282197117805481 0.897033424 3.196661 

0.209051579236984 0.284519106149673 0.93712421 2.735301 

 

ΔX (m) ΔT (s) V (m/s) KE (J) KEnet (J) 

0.004643976688385 0.033 0.140726566 0.000221309 0.000221 

0.016253829002381 0.033 0.492540273 0.002711009 0.002932 

0.083590984344482 0.034 2.458558363 0.067547391 0.07048 

 

 

 

Additional Notes: 

 -The mass of the wooden dowel was found to be 0.0223kg 

W (J) Wnet (J) 

0.01505 0.01505016 

0.051958 0.067008145 

0.228646 0.295654616 
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