
Bridgewater College Bridgewater College

BC Digital Commons BC Digital Commons

Honors Projects

Spring 2022

Statistical Comparison Between Observational Data and Statistical Comparison Between Observational Data and

Simulated Gravitational Waves Simulated Gravitational Waves

Matthew Gordon

Follow this and additional works at: https://digitalcommons.bridgewater.edu/honors_projects

 Part of the Physics Commons

Recommended Citation Recommended Citation
Gordon, Matthew, "Statistical Comparison Between Observational Data and Simulated Gravitational
Waves" (2022). Honors Projects. 242.
https://digitalcommons.bridgewater.edu/honors_projects/242

This Honors Project is brought to you for free and open access by BC Digital Commons. It has been accepted for
inclusion in Honors Projects by an authorized administrator of BC Digital Commons. For more information, please
contact rlowe@bridgewater.edu.

https://digitalcommons.bridgewater.edu/
https://digitalcommons.bridgewater.edu/honors_projects
https://digitalcommons.bridgewater.edu/honors_projects?utm_source=digitalcommons.bridgewater.edu%2Fhonors_projects%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.bridgewater.edu%2Fhonors_projects%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bridgewater.edu/honors_projects/242?utm_source=digitalcommons.bridgewater.edu%2Fhonors_projects%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rlowe@bridgewater.edu

Statistical Comparison Between Observational Data and

Simulated Gravitational Waves

by

Matthew Gordon

Advisor: Dr. Deva O’Neil

Physics Department

Bridgewater College

April 12, 2022

1

Abstract:

 The goal of this project is to determine the effective accuracy of a simulation that graphs

the gravitational waves emitted from a binary system. The Python program that creates these

graphs uses different analytical models to approximate each phase of the model, inspiral and

merger. Data from the Gravitational Wave Open Science Center (GWOSC) website regarding an

observed event is used to compare to the output of the simulation. Another Python program

matches up the two waveforms and calculates a correlation coefficient between the two, which is

close to 1, as desired. Additional graphs are simulated using masses that differ from the observed

event and when compared with it, produce much lower correlation coefficients, supporting the

accuracy of the simulation.

2

Introduction:

 In 2015, the first gravitational waves were detected by the Laser Interferometer

Gravitational-Wave Observatory (LIGO). They were previously predicted by Albert Einstein, in

his general theory of relativity, almost a hundred years prior, but proof of their existence had

never been observed. Gravitational waves are created by violently powerful sources called binary

systems, which are composed of two black holes or neutron stars revolving around each other.

As these large objects accelerate, they emit waves that travel through spacetime, distorting it as

they go. Their importance is in the new data this gives us about the universe and the various

different celestial bodies that inhabit it.

 These waves travel at the speed of light and as they oscillate, they push and pull at

spacetime, producing a measurable outcome that is used to assign properties to a waveform. This

outcome is called strain, which can be found by dividing the change in length of an object by the

original length of that object. One can picture an object being stretched out into a long shape and

a wave passing through it. As the wave travels over the object, it stretches it out and when

measured, lets the observer calculate the strain, which is graphed as the amplitude of the

waveform and is determined by how large the masses of the objects are. The LIGO facilities

used to measure this strain utilize two mirrors that are spaced four kilometers apart and reflect a

laser that is aimed at them [1]. As gravitational waves come into contact with the laser inside the

vacuum chamber, the length of the laser changes, allowing the strain to be measured, and gives

data on the objects that caused those waves.

 Strain is calculated differently depending on which phase the wave is in. For the inspiral

phase, where the two objects are revolving around each other, there are two separate calculations

required to find the overall strain. These two involve different forms of strain, plus polarization

3

and cross polarization, that distinguish which directions the wave is being stretched and

compressed in. If the wave is traveling into the page, then plus polarization occurs where the

wave is being stretched in the x and y directions (resembling a plus sign). Cross polarization is

similar to plus polarization, but just rotated 45 degrees (resembling a multiplication cross). The

equations for finding the strain for plus polarization and cross

polarization strain are as follows:

where 𝚽 is the azimuthal, or rotational, angle in spherical coordinates. 𝑀𝜂 and 𝑀 are the masses

of the two objects, and 𝑟 is the distance between the two objects. Any variable with a dot above

it is the derivative of the respective variable. Often, to make things easier, it is assumed that the

inclination angle, 𝞱, which is the angle of observation, is set to 0, which simplifies the plus

polarization equation to be the following:

To calculate the cumulative strain on a wave at any point during the inspiral phase, this equation

is used:

 For the merger phase, which is everything after the two objects collide, strain is

calculated using a different equation. A similar approach, with the real and imaginary parts of the

waveform separated, applies to this phase when calculating the strain, however, it is outside the

scope of this project.

(1)
,

,
(2)

(3)

.

(4)
.

4

One of the formulas used in graphing waveforms is Euler’s Formula:

In it, there are two separate terms that define different parts of a wave’s behavior. The term with

cos 𝜃 explains the real portion of the wave, while the 𝑖sin 𝜃 term describes the imaginary

behavior. Both terms are orthogonal projections of the unit circle, however the cosine term is 90

degrees out of phase [2]. A good example of this would be electro-magnetic waves where the

electric and magnetic fields are oscillating in the same direction, but orthogonal to each other. If

you look back at the formula for cumulative strain (inspiral), you can see that it resembles

Euler’s Formula. The two equations are off by a negative sign, but there are two different terms,

one real and one imaginary.

 Strain is a significant part of this project since simulated and observed gravitational

waveforms are being compared. The strain is what is measured on the y-axis, with respect to

time on the x-axis. By simulating a binary system that has the same object masses as an observed

event, one can test the predictive power of the simulation. This project aims to do so and the

following sections define how this process was carried out.

Procedure:

 My project involves the use of a Python program [3] adapted by Daniel Hancock from

another program designed by Dr. Maria Babiuc and Dillon Buskirk [4]. The original

Mathematica code was transferred over to a Jupyter notebook. The program takes mass values

for the two objects and then performs calculations to find the strain for both the inspiral and the

merger phases. This is done for both the real and imaginary portions of the wave. After lists are

made that carry the strain values, the two portions are graphed together.

.
(5)

5

Figure 1: The inspiral and merger phases graphed together before matching them up.

At first, the inspiral and merger phases do not match, so a factor is determined that gets added to

the merger strain, effectively moving it to the right, in order to match up with the inspiral strain.

After this change is made, the two plots look like this:

Figure 2: The inspiral and merger phases graphed together after matching them up.

Once this is done, the graph is cleaned up by cutting out the merger plot where it meets up with

the inspiral phase.

6

Figure 3: The full real waveform after cutting out the merger phase from before it meets the inspiral phase.

The same process is completed for the imaginary portion of the waveform as well.

 This program works well for the originally designed scenario where both objects have a

mass of 20 solar mass units. However, the first task was to find out if it worked when those mass

values were altered. Upon changing these values, there were certain regions of code that gave a

“divide by zero” error, due to a variable called stiff time that helps predict the behavior of the

inspiral phase. This portion of the waveform is approximated using a differential equation. This

equation is really only effective before gravitational forces get too strong since it requires a small

time step. As the merger phase begins, those forces get too strong for the differential equation to

handle, and the program fails to execute. The stiff time’s purpose is to let the simulation know

when to stop calculating the differential equation, signaling the end of the inspiral phase. To find

the appropriate stiff time, the mass values were inputted into a Mathematica file developed by

Dr. Babiuc and Dillon Buskirk, and all of the cells were evaluated. One of those cells provided

an error message stating the time value where the program could no longer run. This time was

the proper stiff time that would allow the differential equation to be solved effectively.

7

Figure 4: A sample of the Mathematica file used to find the stiff time for the simulations. The time value in the “NDSolve:”

section would change depending on the mass values, and would subsequently be used in the Python program.

 With the code able to successfully run, the next obstacle encountered was the inability for

the simulation to match the inspiral and merger phases on the graph. This is where a specific

variable was found in the code that moved the merger points to the proper time value. This value

was inserted in as a guess and check variable where the user manually modifies it to see if the

merger is in the correct position. That value needs to be changed depending on the masses in the

binary system that are included at the beginning of the program. After finding the appropriate

value for this variable, the code executed correctly, allowing for work with the observational data

to begin.

 The Gravitational Wave Open Science Center (GWOSC) is a website that hosts and

updates information regarding various events detected by LIGO. The first observed LIGO event

was used to make comparisons with the simulation [5]. Data was downloaded from one of the

observatories as a text file, however it was not formatted in a way that would make it easy to

manipulate. This file had two columns, one with time values and the other with strain values.

They were lined up vertically so that each strain was next to its corresponding point in time.

Because of this, it was not possible to simply copy and paste each column into two separate lists.

Instead, the .split() command was used to separate each time and strain into its own element of a

list and then run a loop to determine which new list to put it in. This required the use of the

modulus operator, which gives the remainder when a number is divided by another number. If

the index of the list “mod” 2 equaled 0, making it an even number, it was from the time column.

8

If the index of the list “mod” 2 equaled 1, meaning it was an odd number, that value came from

the strain column. By doing this, the values were able to be separated into two different lists for

time and strain. Once this was complete, the lists were graphed and produced a waveform for the

observed event.

 After the observed data and independent lists were obtained, the simulated waveform

needed to be exported out of the original program. The plan was to print the time and strain

values to separate text files so that the data could be copied to any program needed. To do this,

each value had to be converted to a string so that it could be printed to an external file (see

Appendix A). Once these files were created, the values were copied back to make sure the plot

was still graphable. Let it also be noted that only the inspiral portion of the simulated waveforms

were taken to initially see if the waves matched up well. Seeing as how the inspiral portion is

approximated similarly to how the data is gathered, it made sense to test just this portion first.

Following that, the same was done with the inspiral portion of the imaginary strain values.

 Now it was time to test the simulation’s accuracy with actual observed events. In a new

program (see Appendix B), both sets of data were plotted on the same graph and produced this

result:

9

Figure 5: Both the observed and simulated (inspiral) waveforms graphed on the same plot.

As one can see, the time lists include vastly different values. This is because in the simulation,

the inspiral and merger phases were adjusted so that they met at 𝑡 = 0. Therefore, all of the

inspiral time values were negative numbers. In the case of the observed data, the time values start

slightly after t = 0 so none of those values overlap with the simulation.

 To fix this problem, the maximum value of the observed strain was found. This gave the

peak of that waveform, which needed to be set to t = 0 so that it gave a reference point for lining

up both waveforms. Next, the index of that point in the list (its place in the list) was obtained and

used to find the corresponding time value, which was labeled as the difference. After that, a “for

loop” was used to run through each element in the time list. If the time value for the max strain

in the list was less than 0, the loop would add that time value to each entry in the list, effectively

moving the entire wave to the right enough to where the peak was at t = 0. If the time value for

the max strain was greater than 0, it would subtract that time value from the entire list, moving

the wave to the left. This process was done for the simulated time values as well, bringing both

waves into the same time frame.

10

Figure 6: The observed and simulated waveforms together after moving each one to meet at t = 0.

While the waves were definitely much closer to each other, they still did not match up well. The

highest peak of the observed waveform was considerably higher than that of the simulated

waveform. After looking at the graphs, it seemed like the peak before the observational

maximum better resembled the maximum of the simulated waveform. This could be because that

was the last peak during the inspiral phase of the observed event. Another possible explanation is

that the largest peak of the waveform occurred at the start of the merger phase, meaning that the

observed peak would not match up with any value in the simulated waveform. A value was then

added to move the observed wave back to the right in the hopes of matching up the two peaks

closest in value. With the new list, the graph looked like this:

11

Figure 7: The observed and simulated waveforms after the extra factor is added to match them up better.

With that factor added in, the waves appear to look more similar, both in amplitude and

frequency.

 Now that the two waveforms lined up, it was time to see how well they matched up by

finding the correlation coefficient between the two. They look to be fairly close when the two are

simply observed, but this coefficient will deliver more precise results. The Pearson correlation

coefficient is calculated using this equation:

where 𝑥𝑖 and 𝑦𝑖 are the values of the variable for their respective sample and 𝑥̅ and 𝑦̅ are the

means for their respective groups. The closer the coefficient is to 1, the more strongly the two

variables are positively correlated. The inverse is true for when the coefficient approaches -1. As

the coefficient gets closer to 0, that implies that the two groups are weakly correlated. For a more

visual outcome, you can graph the observed strain with the simulated strain. Ideally, the output

would be a straight line 45° above the x-axis. The first attempt created a graph that had no

reasonable structure, just a squiggly line. This was likely caused by the time steps being off, and

, (6)

12

after testing this theory, it was found to be correct. To fix this, the time scale of the observed

event was determined, since that is something that cannot be changed. For the simulation, a list

was created and filled with equally separated time values based on the end time, calculated

earlier in the program, and the desired number of entries. That number was set at ten thousand,

so a function was developed that separated each number by the same time scale as the observed

event. To determine the proper amount of entries, the end time was divided by the desired time

scale found earlier.

Figure 8: The code added to Daniel’s program in order to modify the time step and make it a function of the desired time step.

This worked well with the rest of the program, but when compared with the observed strain

values, a graph was produced very similar to the one obtained earlier:

Figure 9: Correlation graph between the observed and simulated strain after the simulated time scale was set to be the same as

the observed event.

The next attempt involved doing away with the list of time values altogether. Instead, the time

13

list was inputted straight from the observed event, forcing the simulation to run with that set of

times. This however, created multiple errors in the rest of the program, keeping it from even

finishing.

 To counter this, the previous time step, outlined in Figure 8 and demonstrated in Figure 9,

was used again. While it did not perfectly replicate the time step of the observed event, it was

very close and would have to suffice for this project. The code from Appendix B was used, but

was modified to scale down the comparison to the portion of code that matched the best, since

“noise” from observed measurements would make things match up less well. Since the time

steps were not the same, it was not possible to simply pick a start and end time to limit the lists

to. Instead, desired start and end times were chosen, and a loop looked through each time list for

those values. However, it was highly unlikely that the exact time being searched for was in the

list, so the code rounded each element to a number of decimal places before determining if that

time should be the cutoff. Once the cutoff points were obtained for the beginning and end of the

time list, new lists for time and strain were created that would just include the desired interval.

This was done for the observed and simulated values, creating four new lists that were used to

make a correlation graph. Before the graph was successfully produced, an error occurred due to

the lists being different lengths. This must have come from the loops that were assigned to find

the cutoff points and the rounding that they were forced to make. To counteract this, a certain

number of entries was subtracted from the simulated lists so as to force them into having the

same number of elements. Then, a graph was produced that looks like this:

14

Figure 10: Graph of the two waveforms on the interval used to calculate correlation coefficient (-0.05 < t < 0).

 After cutting the time and strain lists down to a more manageable size, the correlation

between the observed and simulated strain was then graphed:

Figure 11: Correlation graph consisting of observed strain plotted against simulated strain.

 While a straight 45°, as desired, was not produced, it still shows promising results. The

graph seems to oscillate, much like the waveforms do, between the lower left and upper right

corners of the plot. It is not a perfect line, but it does resemble the desired graph. Satisfied by the

15

results in Figure 11, a built-in Python function was used to actually calculate a coefficient that

describes how well the two lists match up. To do this, the function corrcoef() from the library

NumPy was utilized. When two lists are used as parameters for this function, its output is an

array that gives the coefficients. For the observed and simulated waveforms, when the mass

values were set at 36.2 and 29.1 solar mass units, the correlation coefficient was 0.977, a

relatively high value. To get a better sense of just how accurate the simulation is, the observed

data was compared to data simulated with different masses as shown in the table below:

Observed Masses

(in solar mass units)

Simulated Masses

(in solar mass units)
Correlation Coefficient

M1 = 36.2 M2 = 29.1 M1 = 36.2 M2 = 29.1 .977

M1 = 36.2 M2 = 29.1 M1 = 33 M2 = 29 .933

M1 = 36.2 M2 = 29.1 M1 = 25 M2 = 25 .231

Figure 12: Table of correlation coefficients depending on differing simulated masses.

Conclusion:

 To confirm the simulation’s accuracy, it would ideally produce a low coefficient when

the masses of the simulated waveform were starkly different. To test this, mass values of 25 solar

mass units each for both objects were inputted and when calculated, produced a correlation

coefficient of about 0.231, which is lower than 0.977 as expected. To further test the program,

values were inputted that were closer to the observed event, but not the same, in order to see if it

produced a correlation coefficient that was between the two previous ones. When mass values of

33 and 29 solar mass units were used, the coefficient was 0.933, much closer to when the

observed and simulated masses were the same. This helps support the validity of the simulation

since even as the mass values get closer to being correct, the correlation coefficient is still lower

than when the simulation is designed exactly like the observed event. The results of this project

showed that the simulation does an effective job of predicting gravitational waves, at least for the

inspiral portion.

16

In future projects, students could develop code to automate the process that calculates the

stiff time within this program. This would keep the user from having to go into a separate

program and calculate the stiff time whenever they change the input masses. There may also be a

way to automate these “guess and check” variables that are used to slide waveforms around to

match better. This would probably involve finding a correlation coefficient between the

overlapping models and then looping through with different factors. Then the program could

stick with the factor that produces the best coefficient.

Another improvement for this project would be to include the merger phase when

comparing simulated data to observations. The inspiral portion in this project was calculated

using a similar method to how professionals simulate the data. However, for the merger portion,

professionals use Numerical Relativity (NR) simulations to simulate the waveforms. These

calculations are extremely computationally intensive so instead of using NR, this program uses a

simpler analytical model. Because of this, the model can be run on most computers, but there is a

drawback in that it will not be completely accurate. It would be interesting to see work done that

incorporates the merger portion into this comparison with observed data to see how the

simulation matches up.

17

References:

[1] California Institute of Technology. (n.d.). Learn More. Retrieved April 5, 2022, from

https://www.ligo.caltech.edu/page/learn-more

[2] Sahely, Bichara. (2012, April 29). Euler’s Formula is the Key to Unlocking the Secrets of

Quantum Physics. Retrieved April 5, 2022, from https://bsahely.com/wp-

content/uploads/2015/09/1204-0102v1.pdf

[3] Hancock, Daniel. Analytical Approximations of Gravitational Waves (2021). GitHub

Repository.

https://github.com/devaoneil/AnalyticGravWave/blob/master/AnalyticGravitationalWave.pdf

[4] Babiuc, Maria and Buskirk, Dillon. MathScripts (2018). GitHub Repository. mbabiuc /

October 2018 (github.com)

[5] Gravitational Wave Open Science Center (Updated 2019, May 15). Data release for event

GW150914. Retrieved February 9, 2022, from GWOSC (gw-openscience.org)

"This research has made use of data, software and/or web tools obtained from the Gravitational

Wave Open Science Center (https://www.gw-openscience.org/), a service of LIGO Laboratory,

the LIGO Scientific Collaboration and the Virgo Collaboration. LIGO Laboratory and Advanced

LIGO are funded by the United States National Science Foundation (NSF) as well as the Science

and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society

(MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced

LIGO and construction and operation of the GEO600 detector. Additional support for Advanced

LIGO was provided by the Australian Research Council. Virgo is funded, through the European

Gravitational Observatory (EGO), by the French Centre National de Recherche Scientifique

(CNRS), the Italian Istituto Nazionale di Fisica Nucleare (INFN) and the Dutch Nikhef, with

contributions by institutions from Belgium, Germany, Greece, Hungary, Ireland, Japan, Monaco,

Poland, Portugal, Spain."

https://www.ligo.caltech.edu/page/learn-more
https://bsahely.com/wp-content/uploads/2015/09/1204-0102v1.pdf
https://bsahely.com/wp-content/uploads/2015/09/1204-0102v1.pdf
https://github.com/devaoneil/AnalyticGravWave/blob/master/AnalyticGravitationalWave.pdf
https://github.com/mbabiuc?tab=overview&from=2018-10-01&to=2018-10-31
https://github.com/mbabiuc?tab=overview&from=2018-10-01&to=2018-10-31
https://www.gw-openscience.org/events/GW150914/

18

Appendix A - Code Added to Daniel Hancock’s Program

19

Appendix B - My Comparison Program

import matplotlib.pyplot as plt

import numpy as np

tlist_obs = [...] (VALUES OMITTED TO SAVE SPACE)

hlist_obs = [...] (VALUES OMITTED TO SAVE SPACE)

tlist_sim = [...] (VALUES OMITTED TO SAVE SPACE)

hlist_sim = [...] (VALUES OMITTED TO SAVE SPACE)

max_obs = max(hlist_obs) #Maximum strain value of observed data

ind_obs = hlist_obs.index(max_obs) #Index of that max in the strain list

diff_obs = tlist_obs[ind_obs] #Time value for max of observed strain

new_tlist_obs = [] #Creates new list

for i in tlist_obs:

 if(diff_obs < 0): #If the time value for max strain is less than one,

add that time to get it to 0

 new_tlist_obs.append(i + abs(diff_obs))

 else:

 new_tlist_obs.append(i - abs(diff_obs) + 0.0075) #0.0075 = Magic

number to line up graphs

max_sim = max(hlist_sim) #Maximum strain value of simulated data

ind_sim = hlist_sim.index(max_sim) #Index of that max in the strain list

diff_sim = tlist_sim[ind_sim] #Time value for max of sim strain

20

new_tlist_sim = [] #Creates new list

for i in tlist_sim:

 if(diff_sim < 0): #If the time value for max strain is less than one

add that time to get it to 0

 new_tlist_sim.append(i + abs(diff_sim))

 else:

 new_tlist_sim.append(i - abs(diff_sim))

plt.xlabel('t')

plt.ylabel('h')

plt.plot(tlist_obs, hlist_obs, label='Observed Waveform')

plt.plot(tlist_sim, hlist_sim, label='Simulated Waveform')

plt.title('Observed and Simulated Waveforms')

plt.legend()

plt.xlim(-.5,.5)

plt.xlabel('t')

plt.ylabel('h')

plt.plot(new_tlist_obs, hlist_obs, label='Observed Waveform')

plt.plot(new_tlist_sim, hlist_sim, label='Simulated Waveform')

plt.title('Time-Adjusted Observed and Simulated Waveforms')

plt.legend()

plt.xlim(-0.075,0.02)

desired_t_start = -0.05 #Establishes desired start time

#For every time value, checks to see if (when rounded 2 decimal places)

it is equal to the desired start time

21

for i in new_tlist_obs:

 if(round(i,2) == desired_t_start):

 t_start_obs = i #If it is, sets variable equal to that time value

desired_t_end = 0.00 #Establishes desired end time

#For every time value, checks to see if (when rounded 4 decimal places)

it is equal to the desired end time

for i in new_tlist_obs:

 if(round(i,4) == desired_t_end):

 t_end_obs = i #If it is, sets variable equal to that time value

#Creates new list that is a subset of the original time list

#This new list goes from the desired start time to desired end time

#A new strain list is created from these indeces as well

cut_t_obs =

new_tlist_obs[new_tlist_obs.index(t_start_obs):new_tlist_obs.index(t_end_obs)

]

cut_h_obs =

hlist_obs[new_tlist_obs.index(t_start_obs):new_tlist_obs.index(t_end_obs)]

plt.plot(cut_t_obs,cut_h_obs, label='Observed Strain')

#Same processes, but for the simulated time lists

for j in new_tlist_sim:

 if(round(j,2) == desired_t_start):

 t_start_sim = j

for j in new_tlist_sim:

 if(round(j,4) == desired_t_end):

22

 t_end_sim = j

#Creates new list that is a subset of the original time list

#This new list goes from the desired start time to desired end time

#A new strain list is created from these indeces as well

#Factor is subtracted to make sure the simulated and observed lists are of

equal length

cut_t_sim =

new_tlist_sim[new_tlist_sim.index(t_start_sim):new_tlist_sim.index(new_tlist_

sim[-1])-25]

cut_h_sim =

hlist_sim[new_tlist_sim.index(t_start_sim):new_tlist_sim.index(new_tlist_sim[

-1])-25]

#Prints out the length of the observed and simulated lists to make sure they

match

print(len(cut_t_obs))

print(len(cut_t_sim))

plt.plot(cut_t_sim,cut_h_sim, label='Simulated Strain')

plt.xlabel('t')

plt.ylabel('h')

plt.title('Interval of Observed vs Simulated Strain')

plt.legend()

plt.plot(cut_h_obs,cut_h_sim)

plt.title('Correlation Graph')

plt.xlabel('Observed h')

plt.ylabel('Simulated h')

plt.xlim(-1,1)

plt.ylim(-1,1)

23

print(np.corrcoef(cut_h_obs,cut_h_sim)) #Print out correlation coefficient

	Statistical Comparison Between Observational Data and Simulated Gravitational Waves
	Recommended Citation

	tmp.1651061183.pdf.uCCLh

